If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.8=50t-16t^2
We move all terms to the left:
1.8-(50t-16t^2)=0
We get rid of parentheses
16t^2-50t+1.8=0
a = 16; b = -50; c = +1.8;
Δ = b2-4ac
Δ = -502-4·16·1.8
Δ = 2384.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-\sqrt{2384.8}}{2*16}=\frac{50-\sqrt{2384.8}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+\sqrt{2384.8}}{2*16}=\frac{50+\sqrt{2384.8}}{32} $
| 11.5+2x=4x+11 | | y=-1.8+30 | | y=1.8+30 | | x/3-6/3=-7 | | y=18+30 | | x=10+(10+x/2)/2=15+x/4 | | 3y-y-2y=0 | | 20-4x=300 | | 7+8x-4×=2x+10+3x | | 2x-7=9x-9 | | 50x-(150+20x)=0 | | 30x-150=0 | | 5y^2+9y+3=0 | | x=11.25+0.0625x | | (p-5)(p+3)=-7 | | Y=4-3x2 | | (p-5)(p-3)=-7 | | 63.6+.2x=75 | | 4(5-6m)=36m+5 | | 63.6+.2x=80 | | 63.6+.2x=90 | | 63.6+.2x=70 | | 3j^2-1=0 | | Y=4-3x•-3 | | Y=4-3xx-3 | | 3(b+10)-6=0 | | 8k^2-2=0 | | 6x+(6x+x)=10 | | 3q^2–8q+1=0 | | 8x+17=3x+152 | | 4x/8/5x/8=5/6 | | -5f^2+5f-1=0 |